Sabtu, 02 Maret 2013

Alkana, Alkena, dan Alkuna




Alkana
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Artikel ini bukan mengenai Alkena atau Alkuna.


Struktur kimia dari metana, alkana yang paling sederhana
Alkana (juga disebut dengan parafin) adalah senyawa kimia hidrokarbon jenuh asiklis. Alkana termasuk senyawa alifatik. Dengan kata lain, alkana adalah sebuah rantai karbon panjang dengan ikatan-ikatan tunggal. Rumus umum untuk alkana adalah CnH2n+2. Alkana yang paling sederhana adalah metana dengan rumus CH4. Tidak ada batasan berapa karbon yang dapat terikat bersama. Beberapa jenis minyak dan wax adalah contoh alkana dengan atom jumlah atom karbon yang besar, bisa lebih dari 10 atom karbon.
Setiap atom karbon mempunyai 4 ikatan (baik ikatan C-H atau ikatan C-C), dan setiap atom hidrogen mesti berikatan dengan atom karbon (ikatan H-C). Sebuah kumpulan dari atom karbon yang terangkai disebut juga dengan rumus kerangka. Secara umum, jumlah atom karbon digunakan untuk mengukur berapa besar ukuran alkana tersebut (contohnya: C2-alkana).
Gugus alkil, biasanya disingkat dengan simbol R, adalah gugus fungsional, yang seperti alkana, terdiri dari ikatan karbon tunggal dan atom hidrogen, contohnya adalah metil atau gugus etil.
Alkana bersifat tidak terlalu reaktif dan mempunyai aktivitas biologi sedikit.
Daftar isi  [sembunyikan]
1 Klasifikasi struktur
2 Keisomeran
3 Tata nama
3.1 Rantai karbon lurus
3.2 Rantai karbon bercabang
3.3 Alkana siklik
3.4 Nama-nama trivial
4 Ciri-ciri fisik
4.1 Tabel alkana
4.2 Titik didih
4.3 Konduktivitas dan kelarutan
5 Sifat-sifat kimia
5.1 Reaksi dengan oksigen (reaksi pembakaran)
5.2 Reaksi dengan halogen
5.3 Isomerisasi dan reformasi
5.4 Cracking
5.5 Reaksi lainnya
6 Terdapat pada
6.1 Alkana pada alam semesta
6.2 Alkana di bumi
6.3 Pada bidang biologi
7 Produksi
7.1 Pengilangan minyak
7.2 Fischer-Tropsch
7.3 Persiapan laboratorium
8 Penggunaan
9 Transformasi di lingkungan
10 Bahaya
11 Lihat pula
12 Referensi
13 Bacaan lebih lanjut
[sunting]Klasifikasi struktur

Hidorkarbon tersaturasi dapat berupa:
lurus (rumus umum CnH2n + 2), kerangka karbon membentuk rantai lurus tanpa ada cabang
bercabang (rumus umum CnH2n + 2, n > 3), kerangka karbon utamanya mempunyai cabang-cabang
siklik (rumus umum CnH2n, n > 2), ujung-ujung kerangka karbonnya bertemu sehingga membentuk suatu siklus.
Menurut definisi dari IUPAC, 2 golongan pertama di atas dinamakan alkana, sedangkan golongan yang ketiga disebut dengan sikloalkana.[1] Hidrokarbon tersaturasi juga dapat membentuk gabungan ketiga macam rantai diatas, misalnya linear dengan siklik membentuk polisiklik. Senyawa seperti ini masih disebut dengan alkana (walaupun tidak mempunyai rumus umum), sepanjang tetap berupa asiklik (tidak seperti siklus).
[sunting]Keisomeran



C4-alkana dan -sikloalkana yang berbeda-beda (kiri ke kanan): n-butana dan isobutana adalah 2 isomer C4H10; siklobutana dan metilsiklopropana adalah 2 isomer C4H8.
Bisiklo[1.1.0]butana (C4H6) tidak mempunyai isomer; tetrahedrana (tidak terlihat) (C4H4) juga tidak mempunyai isomer.
Alkana dengan 3 atom karbon atau lebih dapat disusun dengan banyak macam cara, membentuk isomer struktur yang berbeda-beda. Sebuah isomer, sebagai sebuah bagian, mirip dengan anagram kimia, tapi berbeda dengan anagram, isomer dapat berisi jumlah komponen dan atom yang berbeda-beda, sehingga sebuah senyawa kimia dapat disusun berbeda-beda strukturnya membentuk kombinasi dan permutasi yang beraneka ragam. Isomer paling sederhana dari sebuah alkana adalah ketika atom karbonnya terpasang pada rantai tunggal tanpa ada cabang. Isomer ini disebut dengan n-isomer (n untuk "normal", penulisannya kadang-kadang tidak dibutuhkan). Meskipun begitu, rantai karbon dapat juga bercabang di banyak letak. Kemungkinan jumlah isomer akan meningkat tajam ketika jumlah atom karbonnya semakin besar.Contohnya:
C1: tidak memiliki isomer: metana
C2: tidak memiliki isomer: etana
C3: tidak memiliki isomer: propana
C4: 2 isomer: n-butana & isobutana
C5: 3 isomer: pentana, isopentana, neopentana
C6: 5 isomer: heksana, 2-Metilpentana, 3-Metilpentana, 2,3-Dimetilbutana & 2,2-Dimetilbutana
C12: 355 isomer
C32: 27.711.253.769 isomer
C60: 22.158.734.535.770.411.074.184 isomer, banyak di antaranya tidak stabil.
[sunting]Tata nama

Artikel utama untuk bagian ini adalah: Tata nama organik
Tata nama IUPAC untuk alkana didasarkan dari identifikasi rantai hidrokarbon. Rantai hidrokarbon tersaturasi, tidak bercabang maka dinamai sistematis dengan akhiran "-ana".[2]
[sunting]Rantai karbon lurus
Alkana rantai karbon lurus biasanya dikenalo dengan awalan n- (singkatan dari normal) ketika tidak ada isomer. Meskipun tidak diwajibkan, tapi penamaan ini penting karena alkana rantai lurus dan rantai bercabang memiliki sifat yang berbeda. Misalnya n-heksana atau 2- atau 3-metilpentana.
Anggota dari rantai lurus ini adalah:
Metana, CH4 - 1 karbon dan 4 hidrogen
Etana, C2H6 - 2 karbon dan 6 hidrogen
Propana, C3H8 - 3 karbon dan 8 hidrogen
Butana, C4H10 - 4 karbon dan 10 hidrogen
pentana, C5H12 - 5 karbon dan 12 hidrogen
heksana, C6H14 - 6 carbon dan 14 hidrogen
Mulai dengan jumlah karbon mulai dari lima diberi nama dengan imbuhan jumlah yang ditentukan IUPAC diakhiri dengan -ana. Contohnya antara lain adalah pentana, heksana, heptana, dan oktana.
[sunting]Rantai karbon bercabang


Model dari isopentana (nama umum) atau 2-metilbutana (nama sistematik IUPAC)
Untuk memberi nama alkana dengan rantai bercabang digunakan langkah-langkah berikut:
Cari rantai atom karbon terpanjang
Beri nomor pada rantai tersebut, dimulai dari ujung yang terdekat dengan cabang
Beri nama pada cabang-cabangnya
Nama alkana dimulai dengan nomor letak cabang, nama cabang, dan nama rantai utama. Contohnya adalah 2,2,4-trimetilpentana yang disebut juga isooktana. Rantai terpanjangnya adalah pentana, dengan tiga buah cabang metil (trimetil) pada karbon nomor 2, 2, dan 4.
Perbedaan tatanama untuk 3 isomer C5H12
Nama umum/trivial n-pentana isopentana neopentana
Nama IUPAC pentana 2-metilbutana 2,2-dimetilpentana
Struktur
[sunting]Alkana siklik
Artikel utama untuk bagian ini adalah: Sikloalkana
Sikloalkana adalah hidrokarbon yang seperti alkana, tapi rantai karbonnya membentuk cincin.
Sikloalkana sederhana mempunyai awalan "siklo-" untuk membendakannya dari alkana. Penamaan sikloalkana dilihat dari berapa banyak atom karbon yang dikandungnya, misalnya siklopentana (C5H10) adalah sikloalkana dengan 5 atom karbon seperti pentana(C5H12), hanya saja pada siklopentana kelima atom karbonnya membentuk cincin. Hal yang sama berlaku untuk propana dan siklopropana, butana dan siklobutana, dll.
Sikloalkana substitusi dinamai mirip dengan alkana substitusi - cincin sikloalkananya tetap ada, dan substituennya dinamai sesuai dengan posisi mereka pada cincin tersebut, pemberian nomornya mengikuti aturan Cahn-Ingold-Prelog.[3]
[sunting]Nama-nama trivial
Nama trivial (non-IUPAC) dari alkana adalah "parafin." Nama trivial dari senyawa-senyawa ini biasanya diambil dari artefak-artefak sejarah. Nama trivial digunakan sebelum ada nama sistematik, dan sampai saat ini masih digunakan karena penggunaannya familier di industri.
Dapat hampir dipastikan kalau nama parafin diambil dari industri petrokimia. Alkana rantai bercabang disebut isoparafin. Penggunaan kata "paraffin" untuk sebutan secara umum dan seringkali tidak membedakan antara senyawa murni dan campuran isomer dengan rumus kimia yang sama.
Beberapa nama ini dipertahankan oleh IUPAC
Isobutana untuk 2-metilpropana
Isopentana untuk 2-metilbutana
Isooktana untuk 2,2,4-trimetilpentana
Neopentana untuk 2,2-dimetilpropana
[sunting]Ciri-ciri fisik

[sunting]Tabel alkana
Alkana Rumus Titik didih [°C] Titik lebur [°C] Massa jenis [g·cm3] (20 °C)
Metana CH4 -162 -183 gas
Etana C2H6 -89 -172 gas
Propana C3H8 -42 -188 gas
Butana C4H10 0 -138 gas
Pentana C5H12 36 -130 0.626 (cairan)
Heksana C6H14 69 -95 0.659 (cairan)
Heptana C7H16 98 -91 0.684 (cairan)
Oktana C8H18 126 -57 0.703 (cairan)
Nonana C9H20 151 -54 0.718 (cairan)
Dekana C10H22 174 -30 0.730 (cairan)
Undekana C11H24 196 -26 0.740 (cairan)
Dodekana C12H26 216 -10 0.749 (cairan)
Ikosana C20H42 343 37 padat
Triakontana C30H62 450 66 padat
Tetrakontana C40H82 525 82 padat
Pentakontana C50H102 575 91 padat
Heksakontana C60H122 625 100 padat
[sunting]Titik didih


Titik lebur (biru) dan titik didih (pink) pada 14 suku pertama n-alkana, dalam satuan °C.
Senyawa alkana mengalami gaya van der Waals di antara molekul-molekulnya. Semakin besar gaya van der Waals di antara molekul-molekulnya, maka semakin tinggi titik didihnya.[4]
Ada penentu lain untuk menentukan berapa kekuatan gaya van der Waals:
jumlah elektron yang mengelilingi molekul, yang jumlahnya akan meningkat seiring dengan berat molekul alkana
luas permukaan molekul
Dengan temperatur dan tekanan standar, senyawa alkana dari CH4 sampai C4H10 berwujud gas; C5H12 sampai C17H36 berwujud cairan; dan C18H38 ke atas berwujud padat. Karena titik didih alkana ditentukan oleh beratnya, maka bukanlah suatu hal yang aneh kalau titik didih alkana berbanding lurus dengan massa molekulnya. Titik didih alkana akan meningkat kira-kira 20–30 °C untuk setiap 1 atom karbon yang ditambahkan pada rantainya.[4]
Alkana rantai lurus akan memiliki titik didih yang lebih tinggi daripada alkana rantai bercabang karena luas permukaan kontaknya lebih besar, maka gaya van der Waals antar molekul juga lebih besar. Contohnya adalah isobutana (2-metilpropana) yang titik didihnya -12 °C, dengan n-butana (butana), yang titik didihnya 0 °C. Contoh lainnya adalah 2,2-dimetilbutana yang bertitik didih 50 °C dan 2,3-dimetilbutana bertitik didih 58 °C.[4] Hal ini disebabkan karena 2 molekul 2,3-dimetilbutana dapat saling berikatan lebih baik daripada 2,2 dimetilbutana yang berbentuk salib.
[sunting]Konduktivitas dan kelarutan
Alkana tidak menghasilkan listrik dan tidak dapat dipolarisasi oleh medan listrik. Untuk alasan ini mengapa alkana tidak membentuk ikatan hidrogen dan tidak dapat bercampur dengan pelarut polar seperti air.
Kelarutan alkana pada pelarut nonpolar lumayan baik, ciri-ciri yang dikenal dengan nama lipofilisitas.
Massa jenis alkana akan bertambah seiring dengan bertambahnya jumlah atom karbon, tapi tetap akan lebih rendah dari massa jenis air. Maka, alkana akan berada di lapisan atas jika dicampur dengan air.
[sunting]Sifat-sifat kimia

Secara umum, alkana adalah senyawa yang reaktivitasnya rendah, karena ikatan C antar atomnya relatif stabil dan tidak mudah dipisahkan. Tidak seperti kebanyakan senyawa organik lainnya, senyawa ini tidak memiliki gugus fungsional.
Senyawa alkana bereaksi sangat lemah dengan senyawa polar atau senyawa ion lainnya. Konstanta disosiasi asam (pKa) dari semua alkana nilainya diatas 60, yang berarti sulit untuk bereaksi dengan asam maupun basa (lihat karbanion). Pada minyak bumi, molekul-molekul alkana yang terkandung di dalamnya tidak mengalami perubahan sifat sama sekali selama jutaan tahun.
[sunting]Reaksi dengan oksigen (reaksi pembakaran)
Semua alkana dapat bereaksi dengan oksigen pada reaksi pembakaran, meskipun pada alkana-alkana suku tinggi reaksi akan semakin sulit untuk dilakukan seiring dengan jumlah atom karbon yang bertambah. Rumus umum pembakaran adalah:
CnH2n+2 + (1.5n+0.5)O2 → (n+1)H2O + nCO2
Ketika jumlah oksigen tidak cukup banyak, maka dapat juga membentuk karbon monoksida, seperti pada reaksi berikut ini:
CnH(2n+2) + nO2 → (n+1)H2O + nCO
Contoh reaksi, metana:
2CH4 + 3O2 → 2CO + 4H2O
CH4 + 1.5O2 → CO + 2H2O
[sunting]Reaksi dengan halogen
Artikel utama untuk bagian ini adalah: Halogenasi radikal bebas
Reaksi antara alkana dengan halogen disebut dengan reaksi "halogenasi radikal bebas". Atom hidrogen pada alkana akan secara bertahap digantikan oleh atom-atom halogen. Radikal bebas adalah senyawa yang ikut berpartisipasi dalam reaksi, biasanya menjadi campuran pada produk. Reaksi halogenasi merupakan reaksi eksotermik dan dapat menimbulkan ledakan.
Reaksi ini sangat penting pada industri untuk menghalogenasi hidrokarbon. Ada 3 tahap:
Inisiasi: radikal halogen terbentuk melalui homolisis. Biasanya, diperlukan energi dalam bentuk panas atau cahaya.
Reaksi rantai atau Propagasi: radikal halogen akan mengabstrak hidrogen dari alkana untuk membentuk radikal alkil.
Terminasi rantai: tahap dimana radikal-radikal bergabung.
Hasil eksperimen menunjukkan bahwa semua reaksi halogenasi bisa menghasilkan semua campuran isomer yang berarti mengindikasikan atom hidrogen rentan terhadap reaksi. Atom hidrogen sekunder dan tersier biasanya akan tergantikan karena stablitas radikal bebas sekunder dan tersier lebih baik. Contoh dapat dilihat pada monobrominasi propana:[4]

[sunting]Isomerisasi dan reformasi
Isomerisasi dan reformasi ada proses pemanasan yang mengubah bentuk alkana rantai lurus dengan adanya katalis platinum. Pada isomerisasi, alkana rantai lurus menjadi alkana rantai bercabang. Pada reformasi, alkana rantai lurus berubah menjadi sikloalkana atau hidrokarbon aromatik, dengan hidrogen sebagai produk sampingan. Kedua proses ini akan meningkatkan bilangan oktan pada senyawa yang dihasilkan.
[sunting]Cracking
Artikel utama untuk bagian ini adalah: Cracking (kimia)
Cracking akan memecah molekul besar menjadi molekul-molekul yang lebih kecil. Reaksi cracking dapat dilakukan dengan metode pemanasan atau dengan katalis. Metode cracking dengan pemanasan akan melibatkan mekanisme homolitik dengan pembentukan radikal bebas. Metode cracking dengan bantuan katalis biasanya melibatkan katalis asam, prosesnya akan menyebabkan pemecahan ikatan heterolitik dengan menghasilkan ion yang muatannya berbeda. Ion yang dihasilkan biasanya berupa karbokation dan anion hidrida yang tidak stabil.
[sunting]Reaksi lainnya
Alkana akan bereaksi dengan uap dengan bantuan katalis berupa nikel. Alkana juga dapat melalui proses klorosulfonasi dan nitrasi meskipun membutuhkan kondisi khusus. Fermentasi alkana menjadi asam karboksilat juga dapat dilakukan dengan beberapa teknik khusus. Pada Reaksi reed, sulfur dioksida, klorin dan cahaya mengubah hidrokarbon menjadi sulfonil klorida. Abstraksi nukleofilik dapat digunakan untuk memisahkan alkana dari logam. Gugus alkil daris sebuah senyawa dapat dipindahkan ke senyawa lainnya dengan reaksi transmetalasi.
[sunting]Terdapat pada

[sunting]Alkana pada alam semesta


Metana dan etana adalah salah satu komponen kecil dari atmosfer Yupiter.


Ekstraksi dari minyak bumi, yang mengandung banyak komponen hidrokarbon, termasuk alkana.
Alkana adalah senyawa yang terdapat pada sebagian kecil dari atmosfer beberapa planet seperti Yupiter (0.1% metana, 0.0002% etana), Saturnus (0.2% metana, 0.0005% etana), Uranus (1.99% metana, 0.00025% etana) dan Neptunus (1.5% metana, 1.5 ppm etana). Titan (1.6% metana), salah satu satelit dari Saturnus, telah diteliti oleh Huygens bahwa atmosfer Titan menurunkan hujan metana secara periodik ke permukaan bulan itu.[5] Di Titan juga diketahui terdapat sebuah gunung yang menyemburkan gas metana, dan semburan gunung ini menyebabkan banyaknya metana pada atmosfer Titan. Selain itu, ditemukan oleh radar Cassini, terlihat juga ada beberapa danau metana/etana di kawasan kutub utara dari Titan. Metana dan etana juga diketahui terdapat pada bagian ekor dari komet Hyakutake. Analisis kimia menunjukkan bahwa kelimpahan etana dan metana hampir sama banyak, dan hal itu menunjukkan bahwa es metana dan etana ini terbentuk di antara ruang antar bintang. [6]
[sunting]Alkana di bumi
Gas metana (sekitar 0.0001% atau 1 ppm) ada di atmosfer bumi, diproduksi olwh organisme macam Archaea dan juga ditemukan pada kotoran sapi.
Sumber alkana yang paling penting adalah pada gas alam dan minyak bumi.[4] Gas alam mengandung metana dan etana, dengan sedikit propana dan butana, sedangkan minyak bumi adalah campuran dari alkana cair dan hidrokarbon lainnya. Hidrokarbon ini terbentuk dari jasad renik dan tanaman (zooplankton dan fitoplankton) yang mati, kemudian terkubur di lautan, tertutup oleh sedimentasi, dan berubah setelah terkena panas dan tekanan tinggi selama jutaan tahun. Gas alam terbentuk dari reaksi di bawah ini:
C6H12O6 → 3CH4 + 3CO2
Alkana yang berwujud padat dikenal sebagai tar. Tar terbentuk ketika senyawa alkana lain yang lebih ringan menguap dari deposit/sumber hidrokarbon. Salah satu deposit alkana padat alam terbesar di dunia adalah danau aspal yang dikenal dengan nama Danau Pitch di Trinidad dan Tobago.
Metana juga terdapat pada biogas yang diproduksi oleh hewan ternak. Biogas ini dapat menjadi sumber energi terbaharui di kemudian hari.
Alkana hampir tidak dapat bercampur dengan air, jadi kandungannya dalam air laut bisa dikatakan amat sedikit. Meski begitu, pada tekanan yang tinggi dan suhu rendah (seperti di dasar laut), metana dapat mengkristal dengan air untuk membentuk padatan metana hidrat. Meskipun saat ini padatan ini masih belum bisa dieksploitasi secara komersial, tapi energi pembakaran yang dihasilkan diperkirakan cukup besar. Maka dari itu, metana yang diekstraksi dari metana hidrat dapat dianggap sebagai bahan bakar masa depan.
[sunting]Pada bidang biologi
Bakteria dan archaea


Archaea Metanogenik pada kotoran sapi ini menghasilkan metana yang terlepas ke atmosfer bumi.
Beberapa jenis archaea, misalnya metanogen, memproduksi metana dalam jumlah besar ketika memetabolisme karbon dioksida atau senyawa organik lainnya. Energi dilepas ketika pengoksidasian hidrogen:
CO2 + 4H2 → CH4 + 2H2O
[sunting]Produksi

[sunting]Pengilangan minyak


Sebuah pengilangan minyak di Martinez, California.
Seperti sudah dikatakan sebelumnya, sumber alkana yang paling penting adalah gas alam dan minyak bumi.[4] Alkana dipisahkan di tempat pengilangan minyak dengan teknik distilasi fraksi dan diproses menjadi bermacam-macam produk, misalnya bensin, diesel, dan avtur..
[sunting]Fischer-Tropsch
Proses Fischer-Tropsch adalah sebuah metode untuk mensintesis hidrokarbon cair, termasuk alkana, dari karbon dioksida dan hidrogen. Metode ini digunakan untuk memproduksi substitusi dari distilat minyak bumi.
[sunting]Persiapan laboratorium
Sedikit sekali alkana yang dibuat dengan cara disintesis di laboratorium karena alkana biasanya dijual umum. Alkana juga merupakan senyawa yang non reaktif, baik secara biologi maupun kimia. Ketika alkana dibuat di laboratorium, biasanya alkana adalah produk samping dari reaksi. Sebagai contoh, penggunaan n-butillitium sebagai basa akan menghasilkan produk sampingan n-butana:
C4H9Li + H2O → C4H10 + LiOH
Alkana atau gugus alkil dapat dibuat dari alkil halida pada reaksi Corey-House-Posner-Whitesides. Deoksigenasi Barton-McCombie[7][8] akan memecah gugus hidroksil dari alkohol sehingga reaksinya akan berupa:

dan reduksi Clemmensen[9][10][11][12] akan memecah gugus karbonil dari aldehida dan keton untuk membentuk alkana atau senyawa dengan gugus alkil, misalnya:

[sunting]Penggunaan

Penggunaan alkana sudah dapat diketahui dengan baik oleh manusia. Penggunaan alkana biasanya dikelompokkan berdasarkan jumlah atom karbonnya. Empat alkana pertama digunakan pada umumnya untuk keperluan memasak dan pemanasan, di beberapa negara juga sebagai sumber pembangkit listrik. Metana dan etana adalah komponen utama pada gas alam dan biasanya diangkut dalam bentuk cairan, dengan cara dikompresi terlebih dahulu dan gas didinginkan.
Propana dan butana dapat dicairkan dengan tekanan rendah. Propana dan butana umum dijumpai pada elpiji dan juga dipakai sebagai propelan (zat pendorong) pada semprotan aerosol. Butana juga ditemukan pada pemantik rokok cair.
Dari pentana sampai oktana merupakan alkana yang berbentuk cairan. Alkana ini umum digunakan sebagai bahan bakar bensin untuk mesin mobil. Alkana rantai bercabang lebih diutamakan karena cenderung lebih tidak mudah tersulut daripada alkana rantai lurus. Bahan bakar yang mudah tersulut akan menimbulkan ketukan pada mesin yang dapat merusak mesin. Kualitas bahan bakar dapat diukur dengan bilangan oktan bahan bakar itu, dimana bilangan oktan ditentukan dari berapa persen kandungan 2,2,4-trimetilpentana (isooktana) pada bahan bakar (bahan bakar yang bilangan oktannya 98 berarti mengandung 98% isooktana, sisanya adalah heptana). Selain digunakan untuk bahan bakar, alkana-alkana ini juga dipakai sebagai pelarut untuk senyawa nonpolar.
Alkana dari nonana sampai heksadekana (16 atom karbon) merupakan alkana berbentuk cairan dengan viskositas yang lebih tinggi, dan tidak digunakan pada bensin. Alkana jenis ini biasanya digunakan pada bahan bakar diesel dan bahan bakar penerbangan. Kualitas bahan bakar diesel diesel dapat ditentukan dengan besarnya bilangan cetana (cetana adalah nama lama untuk heksadekana). Alkana jenis ini mempunyai titik didih yang tinggi, dan akan menyebabkan masalah jika suhu udara terlalu rendah, karena bahan bakar akan semakin mengental sehingga sulit mengalir.
Alkana dari heksadekana kebelakang biasanya merupakan komponen pada minyak bakar dan pelumas. Beberapa jenis alkana ini juga digunakan sebagai zat anti korosif karena sifatnya yang hidrofobik.
Alkana dengan jumlah karbon 35 atau lebih ditemukan pada bitumen (aspal) yang dipakai untuk melapisi jalan. Selain itu, karena nilainya juga rendah, maka alkana-alkana jenis ini biasanya dipecah menjadi alkana yang lebih kecil dengan metode cracking.
Beberapa polimer sintetis seperti polietilena dan polipropilena adalah alkana yang terdiri dari ratusan atom karbon. Material-material ini umumnya dikenal sebagai plastik dan setiap tahunnya diproduksi milyaran kilogram di dunia.
[sunting]Transformasi di lingkungan

Ketika dilepaskan ke lingkungan, alkana tidak akan mengalami biodegradasi yang cepat, karena alkana tidak memiliki gugus fungsi (seperti hidroksil atau karbonil) yang diperlukan oleh banyak organisme untuk memetabolisme senyawa ini.
Meski begitu, ada beberapa bakteri yang dapat memetabolisme beberapa alkana dengan cara mengoksidasi atom karbon terminal. Hasilnya adalah alkohol, yang dapat dioksidasi lagi menjadi aldehida, dan dioksidasi lagi menjadi asam karboksilat. Hasil akhirnya yang berupa asam lemak dapat dimetabolisme melalui proses degradasi asam lemak.
[sunting]Bahaya

Metana bersifat eksplosif (mudah meledak) ketika bercampur dengan udara (1 – 8% CH4). Alkana suku rendah lainnya juga mudah meledak apabila bercampur dengan udara. Alkana suku rendah yang berbentuk cairan sangat mudah terbakar. Pentana, heksana, heptana, dan oktana digolongkan sebagai senyawa yang berbahaya bagi lingkungan dan beracun. Isomer rantai lurus dari heksana bersifat neurotoksin. Alkana dengan halogen, seperti kloroform, juga dapat bersifat karsinogenik.

Alkuna
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Belum Diperiksa
Artikel ini bukan mengenai Alkana atau Alkena.
Alkuna adalah hidrokarbon tak jenuh yang memiliki ikatan rangkap tiga. Secara umum, rumus kimianya CnH2n-2. Salah satunya adalah etuna yang disebut juga sebagai asetilen dalam perdagangan atau sebagai pengelasan.


Alkuna
Daftar isi  [sembunyikan]
1 Tata Nama
1.1 Rantai karbon lurus
1.2 Rantai karbon bercabang
2 Manfaat
3 Pranala luar
[sunting]Tata Nama

Semua anggota alkuna berakhiran -una dan menurut IUPAC.
[sunting]Rantai karbon lurus
Untuk alkuna rantai lurus, dinamakan sesuai dengan alkana dengan jumlah atom karbon yang sama, namun diakhiri dengan -una. Berikut adalah alkuna dengan jumlah atom karbon 2-10 disebut:

Etuna, C2H2
Propuna, C3H4
Butuna, C4H6
Pentuna, C5H8
Heksuna, C6H10
Heptuna, C7H12
Oktuna, C8H14
Nonuna, C9H16
Dekuna, C10H18
[sunting]Rantai karbon bercabang
Untuk memberikan nama alkuna dengan rantai bercabang sama mirip dengan alkana rantai bercabang. Namun "rantai utama" pada proses penamaan haruslah melalui ikatan rangkap 3, dan prioritas penomoran dimulai dari ujung yang terdekat ke ikatan rangkap 3.
[sunting]Manfaat

Alkuna banyak digunakan untuk bahan awal untuk mensintesis senyawa organik lain yang berguna.

Artikel utama untuk bagian ini adalah: Isomerisme cis-trans
Dalam sebuah kasus khusus pada alkena dimana 2 atom karbon mempunyai 2 gugus yang sejenis, maka notasi cis-trans dapat dipakai. Jika gugus sejenis terletak pada tempat yang sama dari ikatan rangkap, maka disebut sebagai (cis-). Jika gugus sejenis terletak berseberangan, maka disebut sebagai (trans-).



Alkena
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Belum Diperiksa
Artikel ini bukan mengenai Alkana atau Alkuna.


Model 3D dari etilena, alkena yang paling sederhana.
Alkena atau olefin dalam kimia organik adalah hidrokarbon tak jenuh dengan sebuah ikatan rangkap dua antara atom karbon. [1] Alkena asiklik yang paling sederhana, yang membentuk satu ikatan rangkap dan tidak berikatan dengan gugus fungsional manapun, maka akan membentuk suatu kelompok hidrokarbon dengan rumus umum CnH2n. [2]
Alkena yang paling sederhana adalah etena atau etilena (C2H4) Senyawa aromatik seringkali juga digambarkan seperti alkena siklik, tapi struktur dan ciri-ciri mereka berbeda sehingga tidak dianggap sebagai alkena.[2]
Daftar isi  [sembunyikan]
1 Ciri-ciri fisik
2 Tata nama
2.1 Tatanama IUPAC
2.2 Notasi Cis-Trans
3 Lihat pula
4 Bacaan lebih lanjut
5 Referensi
[sunting]Ciri-ciri fisik

Ciri-ciri fisik alkena tidak berbeda jauh dengan alkana. Perbandingan utama di antara keduanya adalah alkena mempunyai tingkat keasaman yang jauh lebih tinggi dibandingkan alkana. Wujud zat dari alkena tergantung dari massa molekulnya. 3 alkena yang paling sederhana: etena, propena, dan butena berbentuk gas. Alkena linear yang memiliki 5 sampai 16 atom karbon berwujud cair, dan alkena yang memiliki atom karbon lebih dari 15 berwujud padat.
[sunting]Tata nama

[sunting]Tatanama IUPAC
Untuk mengikuti tatanama IUPAC, maka seluruh alkena memiliki nama yang diakhiri -ena. Pada dasarnya, nama alkena diambil dari nama alkana dengan menggantikan akhiran -ana dengan -ena. C2H6 adalah alkana bernama etana sehingga C2H4 diberi nama etena.
Pada alkena yang memiliki kemungkinan ikatan rangkap di beberapa tempat, digunakan penomoran dimulai dari ujung yang terdekat dengan ikatan tersebut sehingga atom karbon pada ikatan rangkap bernomor sekecil mungkin untuk membedakan isomernya. Contohnya adalah 1-heksena dan 2-heksena. Penamaan cabang sama dengan alkana.
Pada alkena yang lebih tinggi, dimana terdapat isomer yang letaknya berbeda dengan letak ikatan rangkap, maka sistem penomoran berikut ini dipakai:
Penomoran rantai karbon terpanjang dilihat dari ujung yang terdekat dengan ikatan rangkap, sehingga atom karbon pada ikatan rangkap tersebut mempunyai nomor sekecil mungkin.
Ketahui letak ikatan rangkap dengan letak karbon rangkap pertamanya.
Penamaan rantai alkena itu mirip dengan alkana.
Beri nomor pada atom karbon, ketahui letak lokasi dan nama gugusnya, ketahui letak ikatan rangkap, lalu terakhir namai rantai utamanya.


Berbagai contoh penamaan isomer 1-heksena. Gambar kiri: 1-heksena, gambar tengah: 4-metil-1-heksena, gambar kanan: 4-etil-2-metil-1-heksena.
[sunting]Notasi Cis-Trans
Artikel utama untuk bagian ini adalah: Isomerisme cis-trans
Dalam sebuah kasus khusus pada alkena dimana 2 atom karbon mempunyai 2 gugus yang sejenis, maka notasi cis-trans dapat dipakai. Jika gugus sejenis terletak pada tempat yang sama dari ikatan rangkap, maka disebut sebagai (cis-). Jika gugus sejenis terletak berseberangan, maka disebut sebagai (trans-).


Perbedaan antara isomer cis- dan trans-. Kiri: cis-2-butena, kanan: trans-2-butena.

Tidak ada komentar:

Posting Komentar